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This talk deals with implicit linear multistep methods in the numerical solution of
nonlinear initial value problems. The effect of stopping Newton-type iterations,
in the actual application of linear multistep methods, is analysed and related to
the stepsize of the methods. The accumulated effect of all local stopping errors
is shown to be of an order which is greater (by one) than the order which one
would expect in view of known estimates.

1. LINEAR MULTISTEP METHODS IN THE STIFF SITUATION
In this talk we deal with the numerical solution of the initial value problem

U'(t) = f(t,U(t)) for 0 <t < T, U(0) = up. (1)

Here up € R® is given, and U(t) € R® is unknown. Further, f:[0,7] x D — R®
is a given nonlinear mapping, where D C R®.
Consider the linear multistep method

QoUp + Q1Up—1 + -+ QpUp | = h[ﬁﬂfn + /Blfnfl + -+ ﬂkfnfk]- (2)

Here h > 0 is the stepsize, and v, approximates U(t) at the gridpoint t, = nh.
We assume

E>1, ap+ar+---+a,=0, ay=1, [y >0.
In the application of (2) one first calculates starting vectors v, ~ U(t,)

(0 <n <k-—1). Next, for n > k, the approximations v, are defined by (2),
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with f—; = f(tn—i,vn—;). Since By # 0 and f, = f(t,,v,), one is faced with
the problem of solving a nonlinear equation in order to determine v, from (2).

In general this nonlinear equation cannot be solved exactly. Accordingly, in
practice the linear multistep method only produces approximations to v,, which
will be denoted by u,. These u,, are obtained as numerical approximations to
the solution z* of

F(z) =0,
where
F(z) =-z+hfof(tn,z)+y,
{ y =—(arun—1+ -+ apuni) + h(Brfa1 4+ + Befnr).

In the following we deal with the so-called stiff situation (i.e. the product of
h and the Jacobian matrix B%f(t, x) has entries some of which have very large
absolute values — see e.g. SPIJKER (1996)). For obtaining approximations to
z*, in the stiff situation, one usually applies an appropriate version of Newton’s

method. We consider
F'(zo)(wj —xj_1) = —F(z;_1) forj = 1,2,3,... (3)

Here F'(x) denotes the Jacobian matrix of F' at zo, and x; are approximations
to z*.

In the following the effect will be explored of the stopping of the iterations
(3), after j steps. The errors v,, — u,, which are due to this stopping, will be
analysed in terms of the stepsize h. We shall measure these errors with an
(arbitrary) norm | - | on R®.

2. THE NEWTON STOPPING ERROR
First we assess the norm |z* — ;| of the Newton stopping error &* —xz;. Assume
that the initial guess x( satisfies

|27 — x| = O(h?) (4a)

(with an O-constant of moderate size, and g > 0).
DORSSELAER & SPIJKER (1994) formulated conditions on f under which
the Newton stopping error satisfies

|z* —a;| = O(h"), with r = (j + 1)g. (4b)

Here j > 1, and the O-constant is of moderate size, not affected by stiffness.

3. THE GLOBAL AND LOCAL STOPPING ERRORS

Let Nh =T, and consider the global stopping error Dy = vy —up. In analysing
this error it is convenient to introduce local stopping errors d,, = * — x;. Here
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d,, may be defined to be the Newton stopping error which would be present at
t, under the localizing assumption

Un—i = U(tnfi)a fnfi = Ul(tnfi) forl <¢< k.

The global stopping error amounts to the accumulated effect of Newton
stopping errors at the points tg,tx41,...,tn. For stable linear multistep meth-
ods the global stopping error Dy may thus be expected to satisfy

|Dn| = O(ldk| + |ds1] + - - + |dn]).
Further, the local stopping errors can be estimated by (4b),
da = O(A"), r=(j+1)g (k<n<N). (5)
Hence |[Dy| = O(Nh™) = O(Th"1), so that we expect
|Dx| = O(h™). (6)
4. A NUMERICAL EXPERIMENT PERTINENT TO THE GLOBAL STOPPING

ERROR
In order to check (6) we consider the problem

U{: —108[U1 — (U2 — 2)3] + 3(U2 — 2)2, Ul(O) = -8,
Uy =10%[U; — (Uy —2)3]+1, Ux(0) =0,
0<t<T=1/2.
The true solution is
Ui(t) = (t—2)3, Us(t) =t.

We consider the numerical solution of the above problem by the backward
Euler method, that is

kzl, 040:1, 041:—1, 50:1, ﬂl =0.

Further, we consider the situation where there is only 1 iteration step of (3),
with
Ty =Up—1, uUp=z1att=t, (n=12,...,N).

We deal with the sum-norm in R2. It is easily verified that the conditions
of DORSSELAER & SPIJKER (1994), under which (4b), (5) hold, are fulfilled
here. In fact, we have (5) with moderate O-constant and

r=(j+1)g j=1, ¢=1, so that r =2.
Hence (6) amounts to

|Dn| = O(h") = O(h).
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Some actual ratios |Dy|/h are listed in Table 1.

ho o |Dl/h |Dyl/h?

0.01 0.0183 1.83
0.005 0.00920 1.84
0.0025 0.00461 1.84

Table 1

From the table it is clear that (6) is too pessimistic in this example. The actual
order is greater by 1 than the order in (6).

The question arises of whether the high order of Dy in this example is an
exception just due to some coincidence. We shall see that it is no exception
but an illustration of the interesting fact that

|Dn| = O(h"), (7)

instead of (6), can be expected, in general situations.

5. HUNDSDORFER’S DEVICE

Relation (7) can be shown to be plausible by a general device used in Hunds-
dorfer (1992), Hundsdorfer & Steiniger (1991). Below we formulate this device
for k = 1.

THEOREM (version of Hundsdorfer’s device). Let yn, Y, € R® satisfy

Here S, are s x s matrices, with induced matriz norm ||Sy -...- S;|| <o (1 <
Jj < N). Suppose the structure of y,, is as follows:

Yn = (Sn — D)h"g(tn),
lg®) <¢, |gt)—g(t—h)|<c-h (for h<t<T).

Then
Yn| <C-h", withC=(140+T0)-c.

In the applications of this device y,, Y, stand for local and global errors, re-
spectively. It essentially states that local errors which are O(h") yield a global
error which is of the same order — if the recurrence is stable and the local errors
have the above structure.
It is possible to show that, if the linear multistep method is sufficiently
stable,
Y,=D, and y, = d,

satisfy relations which are essentially as required for applying the general device
of Hundsdorfer, see Spijker (1995). This yields (7) in general situations, and
explains the ratios we found in Table 1. Hence the reason for the high order of
the global stopping error lies in the special structure of the local errors d,,.
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6. DISCRETIZATION ERRORS
We stress that the high order in (7) is not due to a strong damping at the point
T =ty of all preceeding local stopping errors d,, (with n < N). In this context
it is instructive to consider the discretization errors in the application of the
linear multistep method (2).

Let En = U(ty)—vn denote the global discretization error, and e, the local
discretization error (i.e. the error U(t,) — v, under the localizing assumption
that v,—; = U(tn—i), fn—i = U'(tn—;) for 1 < i < k). If a strong error damping
mechanism would be present, we would expect the global error Ex to be of the
same order as the local errors e,.

In Table 2 we have listed actual ratios |Ex|/h for our above example (Sec-
tion 4).

h |En|/h
0.01 1.99
0.005 2.00
0.0025 2.00

Table 2

We clearly see that actually |Ey| = O(h). Since in our example |e,| = O(h?),
there is no strong damping — the global error is 1 order lower than the local
error.

The phenomenon that Dy has the same order as d,, is not due to a damping
mechanism pertinent to any local errors. It is due to the special structure of
the local stopping errors.

7. CONCLUDING REMARKS

1. Theoretical results similar to (7) are available for general linear multistep
methods and variants to (3), see Spijker (1995).

2. Estimates of the form (7) are believed to be relevant to the question of how
many Newton-type iterations should be carried out in order that the stopping
error does not interfere with the intrinsic accuracy of the linear multistep
method. In the above example, just 1 iteration step of (3), with zg = up_1,
yields |vy —un| = O(h?), whereas |U(ty) —vn| = O(h). According to these
estimates it certainly does not pay to perform more than 1 iteration step.

3. Many other numerical experiments were performed, supporting formula (7)
in general situations (k =1,2,3; j = 1,2,3).
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